我的目标是证明这个命题:设$E$是$\mathbf{R}^n$的子集,$f:E\to\mathbf{R}^m$是函数,$F$是$E$的子集合,且$x_0$是$F$的内点,如果在$F$上一切偏导数$\frac{\partial f}{\partial x_j}$都存在,且在$x_0$处连续,则$f$在$x_0$处可微.
下面,我先给出第一阶段的成果.我还会写,来彻底完成这个命题的证明.
证明:
由于$F$上一切偏导数存在,且在$x_0$处连续,所以对于任意给定的正实数$\varepsilon$,都存在相应的正实数$\delta$,使得当$||x'-x_0||< \delta$(这里为什么用小于号,而不是用等号,是有缘由的.见\ref{eq:5})时,就有$\forall 1\leq j\leq n$,\begin{equation}\label{eq:1} ||\lim_{t\to 0;t>0}\frac{f(x'+te_j)-f(x')}{t}-\lim_{t\to 0;t>0}\frac{f(x_0+te_j)-f(x_0)}{t}||\leq\varepsilon\end{equation}设向量$v=(v_1,\cdots,v_n)=v_1e_1+\cdots+v_ne_n$.则
\begin{equation}\label{eq:4}
\lim_{t\to 0;t>0}\frac{f(x'+tv)-f(x')}{t}=\lim_{t\to 0;t>0}\frac{f(x'+tv_1e_1+\cdots+tv_ne_n)-f(x')}{t}\end{equation}易知,存在正实数$l$,当$t<l$的时候,有\begin{equation}\label{eq:5}\begin{cases}||(x'+tv_1e_1)-x_0||<\delta\\\vdots\\||(x'+tv_1e_1+\cdots+tv_{n-1}e_{n-1})-x_0||<\delta\\ ||(x'+tv_1e_1+\cdots+tv_ne_n)-x_0||<\delta\\\end{cases}\end{equation}方程\ref{eq:4}可以化为\begin{equation} \label{eq:6} \lim_{t\to 0;t>0}\frac{\sum_{i=2}^{n}[f(x'+tv_1e_1+\cdots+tv_ie_i)-f(x'+tv_1e_1+\cdots+tv_{i-1}e_{i-1})]+[f(x'+tv_1e_1)-f(x')]}{t}\end{equation}进一步化解\ref{eq:6}:\begin{equation} \label{eq:7} \lim_{t\to 0;t>0}\frac{f(x'+tv_1e_1)-f(x')}{t}+\cdots+\lim_{t\to 0;t>0}\frac{f(x'+tv_1e_1+\cdots+tv_ne_n)-f(x'+tv_1e_1+\cdots+tv_{n-1}e_{n-1})}{t}\end{equation}根据\ref{eq:1},当$v_k\neq 0$时,\begin{equation} \label{eq:8}|| \lim_{t\to 0;t>0}\frac{f(x'+tv_1e_1+\cdots+tv_ke_k)-f(x'+tv_1e_1+\cdots+tv_{k-1}e_{k-1})}{tv_{k}}-\lim_{t\to 0;t>0}\frac{f(x_0+te_k)-f(x_0)}{t}||\leq \varepsilon\end{equation}即\begin{equation}\label{eq:good}|| \lim_{t\to 0;t>0}\frac{f(x'+tv_1e_1+\cdots+tv_ke_k)-f(x'+tv_1e_1+\cdots+tv_{k-1}e_{k-1})}{t}-v_k\lim_{t\to 0;t>0}\frac{f(x_0+te_k)-f(x_0)}{t}||\leq |v_k|\varepsilon\end{equation}当$v_k=0$时,\begin{equation} \lim_{t\to 0;t>0}\frac{f(x'+tv_1e_1+\cdots+tv_ke_k)-f(x'+tv_1e_1+\cdots+tv_{n-1}e_{n-1})}{t}=0\end{equation}而且\begin{equation} v_k\lim_{t\to 0;t>0}\frac{f(x_0+te_k)-f(x_0)}{t}=0\end{equation}因此照样有\ref{eq:good}成立.可见,$$\begin{split}||(\lim_{t\to 0;t>0}\frac{f(x'+tv_1e_1)-f(x')}{t}+\cdots+\lim_{t\to 0;t>0}\frac{f(x'+tv_1e_1+\cdots+tv_ne_n)-f(x'+tv_1e_1+\cdots+tv_{n-1}e_{n-1})}{t})-(v_1\lim_{t\to 0;t>0}\frac{f(x_0+te_1)-f(x_0)}{t}+\cdots+v_n\lim_{t\to 0;t>0}\frac{f(x_0+te_n)-f(x_0)}{t})||\leq (|v_1|+\cdots+|v_n|)\varepsilon\end{split}$$即
\begin{equation}\lim_{x'\to x_0} \mathbf{D_{v}}f(x')=v_1\lim_{t\to 0;t>0}\frac{f(x_0+te_1)-f(x_0)}{t}+\cdots+v_{n}\lim_{t\to 0;t>0}\frac{f(x_0+te_n)-f(x_0)}{t})\end{equation}
而且,由\ref{eq:pig}易得,
\begin{equation}\begin{split}\mathbf{D_{v}}f(x_0)=v_1\lim_{t\to 0;t>0}\frac{f(x_0+te_1)-f(x_0)}{t}+\cdots+v_{n}\lim_{t\to 0;t>0}\frac{f(x_0+te_n)-f(x_0)}{t}\end{split}\end{equation}